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High-field expansions for the anisotropic Ising model 

I G Entingt and J OitmaaS 
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ACT, 2600, Australia 
$ School of Physics, University of New South Wales, Kensington, NSW, 2033, Australia 

Received 9 February 1977 

Abstract. We obtain high-field series expansions for the anisotropic king model on a simple 
cubic lattice. These series are used to investigate the tricritical point that occurs when the 
model is used to represent metamagnets. Some new tests of scaling theory for the crossover 
between two and three dimensions are also undertaken. 

1. Introduction 

The anisotropic Ising model on a simple cubic lattice has been studied by many workers; 
an overall summary is included in the review by Stanley (1974). The investigations have 
concentrated on two general properties that are exhibited by this system: crossover 
between two-dimensional and three-dimensional behaviour and, for negative inter- 
layer couplings, the tricritical point in the field-temperature plane. We have obtained 
new series expansions which we use to extend both these lines of investigation. 

The crossover between two and three dimensions is predicted to follow the scaling 
theory proposed by Abe (1970) and Mikulinskii (1971). The predictions of scaling 
theory have been extensively tested by Krasnow et a1 (1973). Scaling theories are now 
interpreted in terms of the renormalization group approach pioneered by Wilson 
(1971a, b) with crossover phenomena arising from the competition between two fixed 
points of the renormalization transformation (see the review by Fisher 1974). The 
initial application of renormalization group techniques to the anisotropic king model 
was by Grover (1973). 

There have been several studies of the case of negative interlayer coupling but for 
reasons of mathematical convenience these have been confined to the case when the 
interlayer coupling has the same magnitude as the intralayer coupling. Guttman (1972) 
analysed the zero-field susceptibility (using the series of Oitmaa and Enting 1972) to 
test the smoothness postulate (Griffiths 1970, 197 1) which predicts that the susceptibil- 
ity should behave in a manner similar to the internal energy. The other important 
property of systems with negative interlayer coupling is that an increase in the applied 
field changes the transition from continuous to first order, the two regimes being 
separated by a tricritical point. Harbus and Stanley (1972, 1973b) have investigated 
this type of behaviour in the anisotropic Ising model. An example of an ‘Ising’ system 
showing such metamagnetic behaviour is FeCI2 (Birgeneau et a1 1974). 

We have obtained low-temperature series for the anisotropic Ising model described 
by Hamiltonian (2. l), by generalizing the method of partial generating functions (the 
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code method) of Sykes er a1 (1965). From the low-temperature or high-field series, the 
low-temperature to high-temperature transformation of Domb (1949) gives high- 
temperature series for the general field free energy. The high-field series and the 
high-temperature series are complete to ninth order in the appropriate expansion 
variables. Longer series are available for special cases as discussed in 0 2. The main 
restriction is that we do not have series expansions for particular correlation functions 
(cf Stanley and co-workers, unpublished) so that we can investigate neither moments of 
correlation functions (cf Harbus and Stanley 1973a, Krasnow eta1 1973) nor staggered 
susceptibilities (cf Harbus and Stanley 1972, 1973b). 

The anisotropic Ising model, its parameter space and the possible types of series 
expansion are described in § 2. Then Q 3 describes the generalization of the method of 
partial generating functions; 0 4 describes transformations of the general series into 
forms suitable for conventional series analysis techniques. In 0 5 the scaling theory of 
the two-dimensions to three-dimensions crossover is described and some new tests of 
the theory are described, in particular the approach to the square lattice critical point 
along the critical isotherm. In Q 6 the new series is used to extend the investigation of 
the tricritical point begun by Harbus and Stanley (1972, 1973b) and an estimate of the 
tricritical magnetization is obtained. Then 9 7 concludes the paper with a discussion of 
the reasons for the power and utility of the series derivation techniques used. 

2. The anisotropic Ising model 

The model that we consider is defined on a simple cubic lattice of N sites ri by the 
Hamiltonian 

where 
if ri, rj are neighbours in the same x-y plane 

if ri, rj are neighbours in adjacent x-y planes J(ri -rj) = 775 I: otherwise. 

The Ising spin variables take the values u(ri)  = * 1. The first sum in (2.1) sums over 
each pair only once. 

The general behaviour of the anisotropic Ising model in a uniform field is indicated 
in figure 1. 

There are three phase transition surfaces: 

A. H=O, 7 > 0 ,  T<TD(q) 
This is a surface of first-order transitions with a discontinuous change in magnetization 
across the surface, bounded by a line of critical points. T = T D ( ~ )  is discussed under D 
below. 

This is also a surface of first-order transitions separating phases with a uniform layer 
magnetization from systems with a staggering of the layer magnetizations. The function 
H,(q)  is discussed under E below. Apart from the smooth curve sketched by Harbus 
and Stanley (1972) to represent TB(H, - l ) ,  TB(H, 7)) has not been investigated. 

B. 77 <O, T=TB(H, q), Ht(77)<(H(<-277 
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Figure 1. The transition surfaces of the anisotropic king model. A and B are surfaces of 
first-order transitions and Cis a surface of critical points. D is a line of critical points and E is 
a line of tricritical points. X is the square lattice king model critical point. Lines 1 to 8 are 
trajectories along which the standard analysis techniques for single-variable series can be 
used. 

C. 77 <O,  IHI<Ht(q), T =  Tc(H, 
This is a surface of continuous transitiens separating regions of uniform layer magneti- 
zation from regions of staggered layer magnetization. The line Tc(H, -1) was investi- 
gated by Harbus and Stanley (1972, 1973b). Symmetry considerations show that 
TdO, -q)= TD(T), 77 >o* 

These surfaces have two special boundary lines: 

D. H=O,q>O, T = T D ( ~ )  
The location of this line was investigated by Paul and Stanley (1972), Oitmaa and 
Enting (1972) and Enting (1973b). The behaviour of the series results agreed with 
universality theory and had a crossowr behaviour as predicted by scaling theories. 

E. q <O, H =  * H t ( q ) ,  T =  Tt(q) 
This line separates surface B from surface C so that: 

Tt(q)= lim T B ( H , q ) =  lim Tc(H,q ) .  
IHl+Ht(?)+ IHl-Ht(S)- 

This line (or rather pair of lines for positive and negative H )  is a line of tricritical 
points. The Harbus and Stanley estimates of Tt( - l), Ht( - 1) are given in Q 6 .  

X. Finally there is the point X of figure 1 which is the two-dimensional king critical 
point H = q = 0, T = TI =J/(k tanh-'(&- 1)). 

When the conventional techniques of analysis (Gaunt and Guttmann 1974) are used 
they require that the expressions be in terms of one variable so that series investigations 
of the anisotropic Ising model are defined along particular lines in the parameter space 
shown in figure 1. The present investigation and previous investigations can thus be 
classified in terms of such lines. 

Line 1. q =H=O, T > T I  
Without any 77 dependence this line is the zero-field square lattice king model for which 
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extensive series investigations have been undertaken (Domb 1974). Derivatives with 
respect to 7 of the susceptibility, specific heat and moments of the correlation function 
were investigated by Krasnow et a1 (1973). In 9 5 we consider one additional deriva- 
tive. 

Line 2. 7 = H = 0, T 
Again for the two-dimensional Ising model extensive series investigations have been 
performed. Although our series apply to this region, in practice they are too short for 
useful tests of crossover scaling. 

Line 3. 77 = 0 ,  T=TI  
This is the critical isotherm of the square lattice Ising model. The behaviour of the 
magnetization was first investigated by Gaunt et a1 (1964). Betts and Filipow (1972) 
investigated two-parameter scaling theory. In 9 5 we give the first tests of three- 
parameter crossover scaling theory along the critical isotherm. 

Line 4. H = 0, T = TI, 7 > 0 
On the FCC lattice the large-? region corresponds to a BCC lattice model so that large-? 
expansions can be obtained by expanding about an ordered state. Enting (1974) tested 
the three-parameter scaling hypothesis along the line 77 + O  for the anisotropic FCC 

lattice. On the simple cubic the large-77 regime corresponds to the one-dimensional 
Ising model and so the large-? expansions of Citteur and Kasteleyn (1972, 1973a, b) 
and Citteur (1973a, b) are more closely related to high-temperature expansions. 

Line 5 .  H = 0 ,  77 = 1 
This is the simple cubic Ising model. Again extensive series investigations have been 
undertaken (see Domb 1974). 

Class 5.  H = 0, 77 fixed 
These lines were investigated by Paul and Stanley (1972) and Oitmaa and Enting 
(1972). Susceptibility series were used to obtain estimates of TD(q). These susceptibil- 
ity series are longer than those obtained in the present work (note the minor corrections 
given by Oitmaa and Enting 1975). Universality theory predicts that the behaviour 
along all lines in this class shall have behaviour similar to line 5 .  

Line 6. 77 = -1, H = O  
The susceptibility along this line was investigated by Guttmann (1972) to test the 
smoothness postulate which predicts that the susceptibility will behave as the internal 
energy along all lines in class 6'. Many properties on this line are by symmetry 
equivalent to those on line 5 .  

Class 6'. 77 = - 1  f ixed ,H/T<Ht( - l ) /Tt ( - l )  
Harbus and Stanley (1972, 1973b) used staggered susceptibility series along these lines 
to locate the line T d H ,  - 1). They also give susceptibility series appropriate to these 
lines. In 9 4 we extend the susceptibility series by an additional term in the temperature 
variable (as a polynomial in the field variable) and remove the numerical uncertainties 
from the Harbus and Stanley coefficients. Since we lack series for the staggered 
susceptibility we cannot refine their estimates of Tc(H, - 1). 

Line 7. 17 = -l ,H/T=Ht(-l)/Tt(-l)  
We use our extended susceptibility series to extend the analysis of the tricritical point 
begun by Harbus and Stanley. 

TI 
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Line 8. 7 = - 1, T = Tt ( - 1 ), H > Ht( - 1) 
This is the tricritical isotherm. In Q 6 we find that the series are too irregular to give 
useful results in our new test of tricritical scaling. On the basis of scaling theory we can 
however estimate the tricritical magnetization. 

3. High-field series 

The free energy F is obtained from the Hamiltonian X by means of the relation 

(3.1) 
1 

F(T, H, 7) = - z k T  In( U states 1 exp( - %//AT)) 

where k is Boltzman's constant. We define the reduced free energy In A and its low- 
temperature-high-field expansion by 

In A =  -F(T, H,  q ) / k T +  lim F(T,  H, v ) / k T  
T-0 

= ~ a m n p u m u n p p = ~ ~ , ( u , u ) p m  (3.2) 

where 

U = exp( - 4J/kT) 

U = exp( - 47J/kT) 

p = exp( - 2H/kT).  

( 3 . 3 ~ )  

(3.3b) 

(3.3c) 

The L, (U, U )  are polynomials of degree 2m in U and m in U. The series are derived by a 
simple generalization of the method of Sykes etal (1965) which divides the simple cubic 
lattice into two equivalent sublattices A and B so that any pair of neighbours lies one on 
each sublattice. The field H is generalized to HA on lattice A and HB on lattice B so that 
p generalizes to pA and pB and (3.2) becomes 

(3.4) 

The power of the method comes from two properties: 

(i) Lmn(u, u)=Lmn(u, U )  (3.5) 
(ii) for small m it is possible to obtain closed form expressions for F,,, defined by 

The F, which are known as partial generating functions are traditionally represented in 
a coded form Z C, (A ; a, p ; y, 6,  E ; . . .) where the expression (A ; a, p ; y, 6 ,  E ; . . .) rep- 
resentsf;*fPfff:. . . . Our notation departs from that of Sykes etal (1965) by our use 
of semicolons to group together sets of coefficients that would be combined in the 
simple cubic case. The F,, 0 4  m s 4 ,  are given in the appendix. 

Thefi are 

f o  = 1 +pu2v ( 3 . 7 ~ )  

(3.76) f l =  1 +puu 
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f 2  = 1 +pu2 

f3  = 1 f p u  

(3 .7c)  

(3 .7d)  

f 4 =  l + p u  (3 .7e)  

f 5 =  1 + p u 2 u - 1  

ffj= 1 +pu- Iu  

f , = l + p  (3.7h)  

fs = 1 +puu- l  

f9 = 1 +pu2u-* 

(3.7i)  

(3 .7j)  
f10= 1 + p L 2 v  (3 .7k)  

f 1 1 =  1 +pu-l 

f12  = 1 + p u - l  

(3.71) 

(3 .7m)  

f13 = 1 (3 .7n)  

f 1 4 =  1+puu-3. (3 .70)  

When the Fm are expanded we recombine the series using 

The symmetry property (3.5) means that Fo to F4 are sufficient to give series for L1 to 
L9. These series are given in the appendix. 

There are a number of checks on the manipulations of these series. The symmetry 
property (3.5) provides one such check. In addition the coded partial generating 
functions can be combined to give the partial generating functions for the isotropic cases 
(SQ and sc) tabulated by Sykes eta1 (1965). Similarly the final series can be combined to 
give series for the isotropic cases giving a test both of the expressions Fm and the 
expansion procedure. Another more powerful test comes from the low-temperature- 
high-temperature transformation used in the next section. The results of this transfor- 
mation must agree with series such as the susceptibility series of the anisotropic Ising 
model and the general field series for 7 = - 1. 

The high-field series given in the appendix can be used directly for two of the cases 
considered in Q 2. For the square lattice critical isotherm, simple substitution of 
U = (h- l)’, U = 1 after taking appropriate derivatives gives the series used in Q 5 for 
investigating gap exponents. 

Similarly to investigate the approach to the 7 = - 1 tricritical point along line 8 of 
figure 1 we use U = exp( -4J/kT,), U = U-’. 

4. High-temperature expansions 

The high-temperature expansion of the free energy has the form 

F(T,  H, 7) = 2 In cosh(J/kT)+ln cosh(rlJlkT)+ln cosh(H/kT)+ 1 am,,wI;w;xp 
mnp 

(4.1) 
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where 

w 1  = tanh(J/kT) 

w2 = tanh(qJ/kT) 

x = tanh2(H/kT) 

( 4 . 2 ~ )  

(4 .2b)  

( 4 . 2 ~ )  

and 

amnp = 0 i f p > m + n .  (4 .3)  

Domb (1949) pointed out that such high-temperature expansions can be obtained from 
low-temperature expansions. We give a transformation formalism without proof. 

Consider 

In A = C  L,(u, u)pm 

and substitute 

(4 .4a )  

(4 .4b)  

(4.5) 

This will give Em as an infinite series in w l ,  w2 but for the purposes of what follows this 
series can be truncated after terms wyw; where a + b  = M ,  the maximum m value for 
which L, is known (nine in the present work). 

Comparing the coefficients of w?w; in (4.1) and (4 .5)  gives 

C a m n p ( l - p > 2 P / ( 1  +CL)” d m n p p P  m , n # O .  (4.6)  
P P 

The ten known iimnp (including dmn0 = 0) are sufficient to determine the m f n  + 1 
non-zero amnp for m + n s 9. Equation (4 .6)  is simply a set of linear equations in the 
unknowns amnp. If either m or n is zero additional terms from the In cosh terms and the 
T+O limit occurring in (3.2) occur in equation (4 .6) .  To test our transformation we 
checked our series for the isotropic cases against the series used by Essam and Hunter 
(1 968) (series from Essam, private communication). 

The general series is not given here because of its considerable length. We have only 
used it to obtain the series for (a4/8H4)(d/dq)F analysed in the following section and to 
extend the Harbus and Stanley susceptibility series. 

In connection with the Q = -1 case it should be noted that one can fix q = -1, 
i.e. U = U-’, w2 = -w1, before performing the low-high transformation from series in U, 
p to series in w l ,  x .  In fact the substitution U = u-l can be performed before expanding 
the partial generating functions F,. Alternatively one could perform the substitutions 
U = ( 1  - w l ) ’ / (  1 + w I)’,  U = (1 + w $/( 1 - wl)’ before expanding the F,, truncating the 
series at the appropriate order. We have not however investigated the efficiency of such 
an approach. 

Using x = - a2F/aH2 gives 

XkT= 1 - x  +I mn b , , o ~ ? ~ ; [ 2 ~ ( 2 p +  1 ) ~ ~ + ~ - 8 ~ ~ ~ ~ + 2 p ( 2 p - l ) ~ ~ - ~ ] .  (4.7) 
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For 7) = - 1 this sums to give 
a 

X k T =  w;a,(x)  
n=O 

(4.8) 

where the a, (x) are polynomials of degree n in x given for n 6 8 by Harbus and Stanley 
(1972). We have been able to remove the numerical uncertainty from their coefficients 
as and give a9 for the first time: 

a g  = - 1402-28478~ + 1 1 5 5 6 8 0 ~ ~ -  10011488~~+40107912~~-88872520~~  

+ 115745632~~-88314336~~+36561938~~-6342938~~  

~ 9 =  -3214+96472~ 1-294622~'- 1 5 0 0 5 5 0 4 ~ ~ +  1 1 2 0 1 9 2 6 0 ~ ~ - 4 0 0 9 0 2 7 6 8 ~ ~  

+ 8 1 9 4 9 5 3 6 4 ~ ~ -  1008092992~~+739554500~~- 2 9 8 5 6 7 7 9 2 ~ ~  

+ 5 11 1 2 0 5 2 ~  lo. 

5. Tests of scaling theory 

The content of the crossover scaling theory proposed by Abe (1970) and Mikulinskii 
(1971) can be condensed into the form given by Hankey and Stanley (1972) who make 
the basic assumption that G, the singular part of the free energy F can be written as a 
generalized homogeneous function sufficiently near the critical point 

AG(E, H,  77) = G(A%, A%, A ' ~ )  

where 

E =T-TI.  

Defining 

assumption (5.1) predicts that the singular part of G,, behaves as 

k IY? E + O , H = 7 ) = 0  

G,, - lHIY'b, H + O , E = T = O  1 lrl IY"t 7 -0, E =H=O 

y = 1 -pa -@ - K .  

(5.4a) 

(5.4c) 

(5.5a) 

(5.46) 

The exact solutions for the square lattice Ising model require a = $, 6 = 2. Realizing 
that for q = H = 0, Goal, the interlayer correlation function, is proportional to the 
square of the magnetization Golo, assumption (5.1) requires 

(5 .5b )  

or c = g. The renormalization group approach provides a justification of assumption 
(5.1) and approximate realizations of the renormalization transformation can lead to 
predictions for a, 6 and c. 

2( 1 - b ) / a  = (1 - C ) / U  
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When the scaling hypothesis (5.1) is combined with the assumption of two- 
parameter scaling along the line TD(q), the theory predicts the behaviour of critical 
amplitudes as q + O  and the shape of the TD(q)  curve. The scaling prediction of the 
exponent describing TD(q) is equal to the value of the bound found by Enting (1973a). 

For E + 0 the behaviour predicted by equation (5.4a) has been tested by investiga- 
tions of series for GZom and G0zm for small m. This work has been described by 
Krasnow et al(1973) and Stanley (1974) who also give a number of exact results. They 
also investigated moments of correlation functions. 

We have used the high-temperature series to investigate G041 and having con- 
structed PadC approximants we obtain exponent estimates 

The scaling prediction for the exponent is 7-25. 
The q +O behaviour described by ( 5 . 4 ~ )  cannot be readily studied on the simple 

cubic lattice. Enting (1974) investigated the corresponding behaviour on the aniso- 
tropic FCC lattice and found exponents for Golo and Gool consistent with scaling 
predictions. 

Along line 3 of figure 1, T =  TI,  q = 0 the high-field series gives terms to p 9 .  We 
have obtained the following estimates by evaluating PadC approximants to 1 - p  
multiplied by the logarithmic derivative of the function in question: 

scaling predicts - 0.13 0.132*0.002 
Goo1 -P I -  
Glol-(l -p)0'5*0'1 scaling predicts 0.4 

scaling predicts 0.8 Goo2 - 
scaling predicts 0.86. Goo1 - 

(1 - p ) 0 . 8 3 * 0 ' 0 5  

(1 - CL )0.90*0.05 

The ratio method did not give any regular exponent estimates. The other technique 
that was used was that of Gaunt and Sykes (1972) who considered the individual 
coefficients of the logarithmic derivative since  iff(^) - (1 - p)-', d(ln f)/dp - y / (  1 - p )  
so the individual coefficients tend to y. Coefficients obtained from Gool tended to 
- 0.132 f 0.002, coefficients from Glol tended to 0.5 f 0.04 but showed moderately 
large oscillations. The coefficients in the other series showed such large oscillations that 
no exponent estimates could be obtained. 

These results add a new class of successful tests of the scaling theory and indicate 
that the scaling region is sufficiently large for comparatively short series to reveal the 
scaling behaviour. 

6. Investigations of a tricritical point 

The anisotropic Ising model with negative interlayer coupling is very similar to real 
metamagnets such as FeCI2 (Birgeneau et a1 1974). The distinctive feature of such 
systems is that as the applied field is increased the continuous transition becomes 
first order, the point separating these regimes being the tricritical point. 

The scaling theory of tricritical points was formulated by Reidel (1972) but we use 
the formalism of Hankey et a1 (1972). 
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We assume that the singular part of the free energy can be written as a generalized 
homogeneous function 

AG(E, h, A) = G(Aae, Abh, A‘A). (6.1) 

The field A is the field perpendicular to the coexistence surface and is a staggered field in 
the Ising metamagnet. E is the deviation from the tricritical point along the direction 
tangent to the line of critical points. The field h represents deviations from the tricritical 
point in the A = 0 plane but not parallel to the E direction. In figure 1, deviations along 
either of lines 7 or 8 could be described by h and so each of these paths should exhibit 
the same tricritical exponents. 

Reidel and Wegner (1972) have pointed out that in three dimensions, the tricritical 
indices should have their mean field values so that a = f ,  b = 3, c =a. There may 
however also be logarithmic factors included in the tricritical behaviour. 

Since we have not included a staggered field in Hamiltonian (2.1) all the exponents 
that we can study can be expressed in terms of a and b and without a precise estimate of 
the critical line TJH, - 1) to define the E direction we can only investigate tricritical 
exponents involving b. 

5 

In particular we expect the following for susceptibility: 

( T  - TJ-’ H/kT fixed 

T fixed 
x - 

(H - Ht)-+ 

and for magnetization : 

M - M , -  
( T  - Tt)’ H/kT fixed 

(H - HJB T fixed 

where fixed implies fixed at the tricritical point values. 
The scaling predictions for exponents are 

7 = (26 - l ) /b  =; 

p = (1 -b ) /b  = ;. 

( 6 . 2 ~ )  

(6.2b) 

( 6 . 2 ~ )  

(6.2d) 

( 6 . 3 ~ )  

(6.3b) 

Harbus and Stanley (1972, 1973b) estimated that the tricritical point was located at 

kTJJ = 2.60 * 0-05 

Ht/kTt = 0.72 f 0.02 

( 6 . 4 ~ )  

(6.4b) 
or 

pt=0*237*0*010 ( 6 . 4 ~ )  
ut = 0.215 f 0.006 (6.4d) 

or 

(6.4e) 

(6.4f) 
The investigation of ,y along the tricritical isotherm proved unsuccessful. The series is 
dominated by a singularity at p = -0.19. In addition the behaviour for positive real p 
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appears to be generally represented by a pole-zero pair and so no sensible exponent 
estimates could be obtained. This type of behaviour may well indicate significant 
logarithmic corrections to the simple scaling form (6.2b). 

We then attempted to estimate the tricritical magnetization Mt. To do this we had to 
assume the scaling form (6.2d) and construct [4,5] and [5,4] Pad6 approximants to 
(M - x ) *  for various values of x .  The smallest positive zeros of these approximants were 
plotted as in figure 2. On the basis of (6.2d) the best estimate of Mt should be the value 
of x for which the zero occurs at p t .  This leads to 

Mt = 0*70*0*04. 

06t  
1 I 

0.2 2 0,23 0 2L 025 

p ,  location of zeros 

Figure 2. Estimates of the tricritical magnetization, Mt. The graph shows p, the smallest 
real zeros of [M, N ]  Pad6 approximants to ( M - x ) *  for 0.656~ ~ 0 . 7 5 .  Mt is taken as the 
average x value for which these lines cut p = pt = 0.237. The full curve is from [4,5] and 
[5,4] approximants. 

Since the two approximants give identical p estimates to with 2% it would appear 
that all the error in Mt arises from uncertainties in p t .  This is not necessarily true 
because logarithmic corrections to (6.2d) would introduce a systematic bias into the 
estimates. The value 0.7 is much larger than Mt = 1/J6 = 0.408 . . . obtained from the 
mean-field approximation. A large part of this deviation probably results from the fact 
that the mean-field approximation underestimates Ht (1.35 compared to 1.87) (Bidaux 
eta1 1967). 

For completeness we also repeated the Harbus and Stanley investigation of x along 
the line of HIT fixed using our series with the new term. The results did not, of course, 
give any major improvement but were generally consistent with the tricritical scaling 
theory. We content ourselves with giving the exponent estimate 7 = 0.52 f 0.05 
obtained from Pad6 approximants to (0.367 - w )  d(ln X)/dw. 

In conclusion it is clear that improvement of our study of the tricritical point requires 
series including a staggered field so that the strongly divergent staggered susceptibility 
can be used to locate the transition line. Introducing a staggered field has the additional 
advantage that low-temperature series can be obtained so that the first-order transition 
line can be investigated. In addition series for the sublattice (i.e. layer) magnetizations 
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can be obtained. Even though the staggered field is not experimentally variable, its 
conjugate the layer magnetization is experimentally measurable by means of neutron 
diffraction (Birgeneau et a1 1974). 

7. Anevaluation 

The results obtained in the preceding sections are important as a demonstration of the 
power of high-field series techniques as well as extending studies of the anisotropic king 
model. This is particularly true for loose-packed lattices where the techniques of Sykes 
et a1 (1965) apply. (For extensions beyond the spin-; Ising model see Sykes and Gaunt 
(1973) and Enting (1975).) Indirect methods such as the partial generating function 
method and the low-high transformation usually involve large numbers beyond the 
precision of most computer word-lengths. One solution is to perform all manipulations 
using one of the many symbolic and algebraic manipulation packages that includes 
arbitrary precision arithmetic (for a review see Barton and Fitch 1972). Maintaining 
exact results is important because successive indirect techniques will compound any 
lack of precision. 

During the course of our work a new technique of series analysis has been developed 
which promises to revolutionize the study of many variable series since it is able to 
describe crossover between different classes of critical phenomena. The technique was 
developed by Fisher (1977) and suggests fitting series to a partial differential equation 
(PDE). This is a generalization of Pad6 approximants sinceP(x)/Q(x) = d(ln f (x))/dx = 
f’(x)/f(x) is equivalent to P(x)f (x) - Q(x)f’(x) = 0. The utility of the PDE technique is 
as yet unknown and so it would be inappropriate to apply it to new situations such as 
tricritical points. The scaling behaviour around the two-dimensional Ising model is 
however fairly well understood and the general series could provide a large number of 
two-variable functions that could be investigated by the new technique. The PDE 
method does apply to more variables but this would be an undesirable complication in 
preliminary studies. 
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Appendix. Partial generating functions and high-field polynomials 

A.l .  Coded expressions for the partial generating functions 
Fo=lnfo  

F1= (6; 4,2) 

F~=(11;8 ,2;0 ,0 ,1)+2(11;6 ,4;  1)+2(10;4,4;2)+4(10;6,2;0,2)-9$(12;8,4) 
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F,= 8(13; 6 ,3;  1, 2,O; 0, 1)+ 16(14; 6 ,4;  2, 2)+ 12(14; 8, 2; 0,4)+2(14; 4, 6; 4) 

+8(15; 6, 6; 3)+24(15; 8 ,4;  1,2)+8(15; 8 ,4;  2, 0, 1) 

+8(15; 10, 2; 0, 2, 1)-50(16; 8 ,6;  2)+8(16; 10,4; 1, 0, 1) 

-112(16; 10,4; 0, 2)+1(16; 12, 2; O,O, 2)-64(17; 10,6; 1) 

-32(17; 12,4; O,O,  1)+151$(18; 12, 6)+4(14; 5 , 6 ;  2, 0, 0; 1) 

+4(14; 8 ,3;  0, 2,O; 0, 1)+4(14; 9, 2; 0, 2, 0; O,O,  1) 

F4=8(16; 6, 4; 2, 3, 0; 0, 0, 0, 0; 0, 1)+4(16; 81 2; 1, 4, 0; 0, 0, 0, 0; 0, 0, 1) 

+2(16; 8 ,4 ;  0, 0,O; 0,4)+4(16; 8, 2; 0 ,4 ,0;  0, 2) 

+8(16; 6, 4; 2, 2, 0; 0,2) + l(17; 4, 8; 4, 0, 0; 0, 0, 0, 0; 1) 

+2(17; 10, 2; 0,4,  0; O , O ,  0, 0; O,O, 1)+24(17; 6, 5; 3, 2,O; 0, 1) 

+48(17; 8, 3; 1,4,  0; 0, 1)+ 16(17; 7, 5 ;  1, 2, 0; 1, 1) 

+ 16(17; 8 ,4 ;  1, 2,O; 0, 2)+ 16(17; 9, 3; 1 ,2 ,0 ;  0, 1, 1) 

+2(18; 4, 8; 6)+32(18; 6, 6; 4, 2)+92(18; 8 ,4;  2,4) 

+36(18; 10,2; 0,6)+8(18; 5 ,  8; 4,0,0;  1)+40(18; 7 ,6 ,  2, 2,O; 1) 

+64(18; 8,5; 2,2,0;  0, 1)+24(18; 9,4; 2,2,0;  O,O, 1) 

+32(18; 10,3; 0,4,0;  0, 1)+24(18; 10,3; 1,2, 1; 0, 1) 

+24(18; 11,2; 0,4,0;  O,O, 1)+8(18; 6,8; 2,0,0; 2) 

+4(18; 10,4; 0 ,2 ,0;  0,2)+8(18; 11,3; 0,2,0;  0,1, 1) 

+4(18; 12,2; 0,2,0;  O,O, 2)+2(18; 8,4; 4,0,2) 

+ 16(19; 6,8; 5 ) +  144(19; 8,6; 3,2)+24(19; 8,6; 4,0,1) 

+ 160(19; 10,4; 1,4)+96(19; 10,4; 2,2, 1)+40(19; 12,2; 0,4, 1) 

+20(19; 7,8; 3,0,0,1)+24(19; 9,6;  2,0, 1; 1) 

-240(19; 10,5; 1,2,0;  0,1)+36(19; 11,4; 1,2,0;  O,O, 1) 

+ 12(19; 12,3; 0,2, 1; 0, 1)+8(19; 13,2; 0,2,1; O,O, 1) 

- 116(20; 8,8; 4)-788(20; 10,6; 2,2) 

+80(20; 10,6; 3,0,  1)+ 128(20; 12,4; 1,2,1)+ 18(20; 12,4; 2,0,2) 

-762(20; 12,4; 0,4)+ 12(20; 14,2; 0,2,2) 

- 148(20; 9,8; 2,0,0;  1) - 148(20; 13,4; 0,2,0;  0, 0, 1) 

- 148(20; 12,5; 0,2,0;  0, 1)-494(21; 10,8; 3) 

- 1336(21; 12,6; 1,2)-364(21; 12,6; 2,0, 1) 

-5d2(21; 14,4; 0,2,1)+ 16(21; 14,4; 1,0,2) 

+ l(21; 16,2; 0, 0 ,3)+  1202(22; 12,8; 2) 

+3132(22; 14,6; 0,2)-458(22; 14,6; 1,0, 1) 
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-67$(22; 16,4; O,O, 2)+ 1910(23; 14,8; 1) 

+955(23; 16,6; O,O, 1)-3005*75(24; 16,8) 

A.2. Anisotropic Ising model high -field polynomials 

L1= + 1u2u 

L ~ =  -3au4v2+1u4v +2U3v2 

L3 = +21;u6v3 - 1 2 ~ ~ ~  + 1u6u - 2 4 ~  ' v 3  + 8u5u2 +6u4u3 
L ~ =  - i 6 2 ~ ~ ~ ~ ~ + 1 3 5 ~ ~ ~ ~ - 2 5 ~ ~ ' ~ ~ + 1 ~ ' ~ + 2 7 0 ~ ~ ~ ~ - 1 6 8 ~ ~ ~ ~ + 1 6 u ~ u ~  

- 135U6u4 +48u + 2u6u + 18u ' v 4  + l U 4 u 4  

Ls = + l u  "0 + 14O6$u ' O v ' -  1 5 3 6 ~  lov4 + 4 6 8 ~  lov3  - 4 4 ~  l0u2- 3 0 7 2 ~  9 ~ 5  

+ 2 7 5 2 ~ ~ ~ ~ -  576u9v3 + 24u9v2+ 2 3 1 2 ~  8 ~ 5  - 1 5 2 0 ~ ' ~ ~  + 1 2 6 ~  ' v 3  

- 664u7v5 + 240u 7 v 4  + 24u7v + 35u6v5 + 8u6v4 + 8u 'U ' + 8u8u2 

L6 = - 1315eu I 2v6+  1 7 7 9 0 ~  12v5 - 7 5 6 6 ~  12v4 + 12034~ 12v3 - 6 7 ; ~  1 2 U 2  

+ l u  12u + 3 5 5 8 0 ~ " ~ ~ - 4 1 3 6 0 u  ''U'+ 1 3 6 6 0 ~  "u4- 1 3 9 2 ~  

+ 3 2 ~  - 3 5 8 1 2 ~  ' O v 6  + 3 3 6 4 4 ~  ' O V ' -  7 1 2 4 ~  

+ 1 6 ~  ' O V  + 16066:~ 9 ~ 6  - 1 0 8 3 2 ~  9~ + 6 1 2 ~  9 ~ 4  + 1 4 4 ~  9~ 

+ 2u9u2 - 2 7 2 9 ~  ' v 6  + 872u8uS+ 2 0 0 ~  'v4+ 6u8u3 - 74u7u6 

+ 96u7vs + 8u7u4 +40u6v6+ 2u5v6 

+ 1 3 2 ~  loo3 

L7= + 1 2 9 9 1 9 f ~ ' ~ ~ ~ - 2 0 9 4 1 2 ~ ~ ~ ~ ~ +  1 1 4 8 4 5 ~ ' ~ ~ ' - 2 6 4 4 0 ~ ~ ~ ~ ~ + 2 5 8 0 ~ ' ~ ~ ~  

- 9 6 ~  14u + 1 U 14v - 41 8 8 2 4 ~  13 t r  + 597000~ 

+ 4 6 3 8 4 ~  13u4- 2 7 6 0 ~  13u3 +40u 13v2 + 528190~ ' 2 ~ 7 - 6 4 0 2 4 8 ~  I2v6 

+ 2 1 8 5 7 6 ~ ' ~ ~ ' - 2 0 5 0 4 ~  12u4- 8 4 ~  ' 2 ~ 3 + 2 4 ~ 1 2 ~ 2 - 3 2 4 0 4 8 ~ 1 ' ~ 7  

+ 3 1 2 9 1 2 ~  - 6 3 2 7 2 ~  "U' - 1 6 0 0 ~  "v4 + 3 6 0 ~  ' + 8~ "U' 

+ 9 4 2 0 0 ~ ' ~ ~ ~ - 6 2 7 2 4 ~  'Ov6+625u lov5+ 1 4 2 4 ~  'Ou4+84u ' O u 3  

- 8 0 2 4 ~ ~ ~  + 9 6 0 ~  9 ~ 6 +  1 2 7 2 ~ ~ ~ ~  + 1 2 8 ~  9 ~ 4  - 1 3 0 2 ~ ' ~  +696u'u6 

- 27 11 6 8 ~  

+ 1 12U8v5+ 8u8u4+ 112u7v7+ 24u7u6+22u6v7 

L8 = - 1 3 3 6 2 9 6 ~  16t)' + 2498929~ 16 t )  - 168 1690& I 6 t )  + 5 1 3 2 9 7 ~  16u 

- 7 4 2 4 7 f ~ ' ~ v ~ + 4 8 9 3 ~ ' ~ ~ ~ -  129:ul6v2+ ~ u ' ~ v  + 4 9 9 7 8 5 8 ~ ' ~ ~ ~  
-8427736~ " ~ ~ + 4 8 8 4 9 2 4 ~  15u6- 1197624~ "u5+ 124394~ "u4 

- 4 8 2 4 ~ ' ~ ~ ~ + 4 4 8 ~ ' ~ ~ ~ - 7 5 7 7 2 4 9 ~ ' ~ ~ ' +  1 1 2 1 2 1 9 6 ~ ' ~ ~ ~  

- 5 2 8 0 8 3 2 ~ ~ ~ ~ ~ + 9 0 4 4 9 6 ~ ~ ~ ~ ' - 4 3 0 7 4 ~  l4u4-66Ou 1 4 ~ 3 + 3 2 ~ 1 4 ~ 2  

+ 591 1 5 1 8 ~  13u8 - 7364680~ 13v7+2519472u 13u6 - 185808~ 13v 

- 1 3 3 7 6 ~ ' ~ ~ ~ + 5 2 8 ~ ' ~ ~ ~ +  1 6 ~ ' ~ ~ ~ - 2 4 4 4 7 7 1 3 u  '2~8+2380142~12v7 

- 4 2 9 6 0 6 ~ ' ~ ~ ~ - 4 1 6 9 6 ~ ' ~ ~ ' + 3 3 7 9 ~ ' ~ ~ ~ + 3 5 4 ~ ' ~ ~ ~ + 2 ~ ' ~ ~ ~  
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+459372~ "U' - 281336~ "U' - 23956~ " ~ ~ + 9 3 0 4 ~  "U' 

+ 1 3 8 2 ~  "u4 + 2 4 ~  ' 'u3 - 280% ''U' - 18088~ loo7 + 6 1 2 0 ~  loo6 

+ 1 3 5 2 ~  ' 'u5 +98u lou4 - 8 3 8 6 ~ ~ ~ '  + 3224u9u7+ 1 0 3 2 ~  ' u 6  + 1 4 4 ~ ~ ~ ~  
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- i90$u8u + 352u8u + 32u ' u 6  + 1u8u4 + 1 3 4 ~  7 ~ 8  + 6u 6 ~ 8  

L9 = + 14175534;~ 18u9 - 3 0 1 6 0 2 7 6 ~ ' ~ ~ ~ +  24079426~ -9215812~ 18u6 

+ 1 8 0 2 3 8 3 ~ ' ~ ~ ~ -  1 7 8 9 7 2 ~ ' ~ ~ ~ + 8 4 9 3 f ~ ' ' ~ ~ -  1 6 8 ~ ' ~ ~ ~ + 1 ~ ' ' ~  

-60320552~ 17u9+ 117370888~ ' 7~8-82843064~17~7  

+ 26700656~ I 7v6 -  4091356~ 17u' + 284144~ 17u4 - 7 7 2 8 ~  "tr3  

+56u"u2+ 1 0 6 8 4 4 2 9 6 ~ ' ~ ~ ~ -  186353272~ '~~ '+  1 1 1 8 7 8 0 5 6 ~ ' ~ ~ ~  

-28048840~ ' 6 ~ 6 + 2 7 9 2 8 3 2 ~ 1 6 ~ s - 7 1 3 3 6 ~  16u4- 1 7 3 4 ~  16u3 

+ ~ O U ' ~ V ' -  1 0 1 2 7 4 6 8 8 ~ ' ~ ~ ~ +  1 5 3 8 6 9 6 1 6 ~ ' ~ ~ ~ - 7 3 6 3 8 2 4 0 ~ ~ ' ~ ~  

+ 11973466s~ ' 5~6-254520~  " ~ ~ - 4 3 7 9 2 ~ ~ ' ~ ~ + 4 8 0 ~ ~ ~ ~ ~  

+ 2 4 ~ ' ' ~ ~ + 5 4 4 5 2 2 1 0 ~ ' ~ ~ ~ - 6 8 8 4 6 3 1 6 ~ ' ~ ~ ~ + 2 2 9 5 1 6 7 2 ~ ~ ~ ~ '  

- 964884~ 14u6 - 263081~ 14u5 - 3 8 0 ~  14v4 + 8 0 4 ~  I4u3 + 8~ 14u2 

- 1 5 7 1 4 0 3 6 ~ ' ~ ~ ~ +  1 5 0 3 9 3 7 6 ~ ' ~ ~ ~ - 2 1 1 1 4 3 2 ~ ' ~ ~ ~ - 5 1 1 6 6 4 ~ ' ~ ~ ~  

+ 8 9 9 6 ~  ' 3 ~ 5 + 6 2 4 0 ~ 1 3 ~ 4 +  1 9 2 ~  l 3 v 3 +  1 7 0 3 0 8 0 ~ ' ~ ~ ~ - 7 4 2 8 8 0 ~  12u8 

- 3 18948~ 12u7 + 36872~ ''u6 + 12644~ 12u5 + 9 6 0 ~  l2u4 +6u ' 'u3 

+ 17464th " u 9 -  19636th ''U'+ 14872~ "u7+9832u ' ' ~ ~ + 2 0 8 0 ~  11u5 

+ 4 8 ~  11u4 - 33424~ ''U' + 4 8 0 8 ~  loo8 + 7 1 7 4 ~  ' 'u7 + 1 6 3 2 ~  loo6 

+ 1 6 ~  ''u~+ 8~ " ~ ~ - 4 8 8 4 ~ ~ ~ ~  + 2 8 8 8 ~ ~ ~ ~  + 5 0 4 ~ ~ ~ ~  

+ 56u9u + 16u 9u ' + 444u 8u9 + 96u 8u8 + 72u7u + lu6u9.  
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